• J Vis Exp · Sep 2020

    Halogenated Agent Delivery in Porcine Model of Acute Respiratory Distress Syndrome via an Intensive Care Unit Type Device.

    • Raiko Blondonnet, Bertille Paquette, Jules Audard, Ridvan Guler, François-Xavier Roman, Ruoyang Zhai, Corinne Belville, Loïc Blanchon, Thomas Godet, Emmanuel Futier, Jean-Etienne Bazin, Jean-Michel Constantin, Vincent Sapin, and Matthieu Jabaudon.
    • Department of Perioperative Medicine, CHU Clermont-Ferrand; GReD, CNRS, INSERM, Université Clermont Auvergne; rblondonnet@chu-clermontferrand.fr.
    • J Vis Exp. 2020 Sep 24 (163).

    AbstractAcute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure and death in critically ill patients, and there is an urgent need to find effective therapies. Preclinical studies have shown that inhaled halogenated agents may have beneficial effects in animal models of ARDS. The development of new devices to administer halogenated agents using modern intensive care unit (ICU) ventilators has significantly simplified the dispensing of halogenated agents to ICU patients. Because previous experimental and clinical research suggested potential benefits of halogenated volatiles, such as sevoflurane or isoflurane, for lung alveolar epithelial injury and inflammation, two pathophysiologic landmarks of diffuse alveolar damage during ARDS, we designed an animal model to understand the mechanisms of the effects of halogenated agents on lung injury and repair. After general anesthesia, tracheal intubation, and the initiation of mechanical ventilation, ARDS was induced in piglets via the intratracheal instillation of hydrochloric acid. Then, the piglets were sedated with inhaled sevoflurane or isoflurane using an ICU-type device, and the animals were ventilated with lung-protective mechanical ventilation during a 4 h period. During the study period, blood and alveolar samples were collected to evaluate arterial oxygenation, the permeability of the alveolar-capillary membrane, alveolar fluid clearance, and lung inflammation. Mechanical ventilation parameters were also collected throughout the experiment. Although this model induced a marked decrease in arterial oxygenation with altered alveolar-capillary permeability, it is reproducible and is characterized by a rapid onset, good stability over time, and no fatal complications. We have developed a piglet model of acid aspiration that reproduces most of the physiological, biological, and pathological features of clinical ARDS, and it will be helpful to further our understanding of the potential lung-protective effects of halogenated agents delivered through devices used for inhaled ICU sedation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…