Journal of visualized experiments : JoVE
-
Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure and death in critically ill patients, and there is an urgent need to find effective therapies. Preclinical studies have shown that inhaled halogenated agents may have beneficial effects in animal models of ARDS. The development of new devices to administer halogenated agents using modern intensive care unit (ICU) ventilators has significantly simplified the dispensing of halogenated agents to ICU patients. ⋯ Mechanical ventilation parameters were also collected throughout the experiment. Although this model induced a marked decrease in arterial oxygenation with altered alveolar-capillary permeability, it is reproducible and is characterized by a rapid onset, good stability over time, and no fatal complications. We have developed a piglet model of acid aspiration that reproduces most of the physiological, biological, and pathological features of clinical ARDS, and it will be helpful to further our understanding of the potential lung-protective effects of halogenated agents delivered through devices used for inhaled ICU sedation.
-
Human macrophages are primary host cells of intracellular Mycobacterium tuberculosis (Mtb) infection and thus have a central role in immune control of tuberculosis (TB). We have established an experimental protocol to follow immune polarization of myeloid-derived cells into M1 (classically activated) or M2 (alternatively activated) macrophage-like cells through assessment with a 10-color flow cytometry panel that allows visualization and deep-characterization of green-fluorescent-protein (GFP)-labeled Mtb in diverse macrophages subsets. Monocytes obtained from healthy blood donors were polarized into M1 or M2 cells using differentiation with granulocyte macrophage-colony-stimulating factor (GM-CSF) or macrophage-colony stimulating factor (M-CSF) followed by polarization with IFN-γ and lipopolysaccharide (LPS) or IL-4, respectively. ⋯ Several M1/M2 markers were downregulated after Mtb infection, which suggests that Mtb can modulate macrophage polarization. In addition, 24 different cell clusters of different sizes were found to be uniquely distributed among the M1 and M2 uninfected and Mtb-infected cells at 24-hours post-infection. This M1/M2 flow cytometry protocol could be used as a backbone in Mtb-macrophage research and be adopted for special needs in different areas of research.