-
Mayo Clinic proceedings · Jul 2021
Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction.
- Andrew S Tseng, Viengneesee Thao, Bijan J Borah, Itzhak Zachi Attia, Jose Medina Inojosa, Suraj Kapa, Rickey E Carter, Paul A Friedman, Francisco Lopez-Jimenez, Xiaoxi Yao, and Peter A Noseworthy.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
- Mayo Clin. Proc. 2021 Jul 1; 96 (7): 1835-1844.
ObjectiveTo evaluate the cost-effectiveness of an artificial intelligence electrocardiogram (AI-ECG) algorithm under various clinical and cost scenarios when used for universal screening at age 65.Patients And MethodsWe used decision analytic modeling to perform a cost-effectiveness analysis of the use of AI-ECG to screen for asymptomatic left ventricular dysfunction (ALVD) once at age 65 compared with no screening. This screening consisted of an initial screening decision tree and subsequent construction of a Markov model. One-way sensitivity analysis on various disease and cost parameters to evaluate cost-effectiveness at both $50,000 per quality-adjusted life year (QALY) and $100,000 per QALY willingness-to-pay threshold.ResultsWe found that for universal screening at age 65, the novel AI-ECG algorithm would cost $43,351 per QALY gained, test performance, disease characteristics, and testing cost parameters significantly affect cost-effectiveness, and screening at ages 55 and 75 would cost $48,649 and $52,072 per QALY gained, respectively. Overall, under most of the clinical scenarios modeled, coupled with its robust test performance in both testing and validation cohorts, screening with the novel AI-ECG algorithm appears to be cost-effective at a willingness-to-pay threshold of $50,000.ConclusionUniversal screening for ALVD with the novel AI-ECG appears to be cost-effective under most clinical scenarios with a cost of <$50,000 per QALY. Cost-effectiveness is particularly sensitive to both the probability of disease progression and the cost of screening and downstream testing. To improve cost-effectiveness modeling, further study of the natural progression and treatment of ALVD and external validation of AI-ECG should be undertaken.Copyright © 2020 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.