• Spine · Jan 2009

    Comparative Study

    A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques.

    • Lacey Bresnahan, Alfred T Ogden, Raghu N Natarajan, and Richard G Fessler.
    • Department of Neurological Surgery, Northwestern University, 676 North St. Clair, Chicago, IL 60611-2922, USA. lbresnah@nmff.org
    • Spine. 2009 Jan 1; 34 (1): 17-23.

    Study DesignA validated finite element model of the intact lumbar spine (L1-S1) was modified to study the biomechanical changes as a result of surgical alteration for treatment of stenosis at L3-L4 and L4-L5 using 2 established techniques and 1 new minimally invasive technique.ObjectiveTo investigate the impact of graded posterior element removal associated with new surgical techniques on postoperative segmental motion and loading in the annulus.Summary Of Background DataSeveral studies have shown that laminectomy increases and produces segmental instability unless fusion is performed. However, no data exist comparing the biomechanical impact of completely preserving the contralateral anatomy and what effect this has compared to traditional approaches.MethodsThe effect of graded removal of posterior elements because of iatrogenic change associated with the 3 approaches was investigated using an 800 N compressive preload using the follower load technique and application of 8 Nm flexion, 6 Nm extension, 4 Nm torsion, and 6 Nm lateral bending moments.ResultsThis study shows that removal of posterior elements for treatment of stenosis at L3-L4 and L4-L5 results in increased flexion-extension and axial rotation at the surgical site. This study also shows that the segmental motion following a traditional laminectomy is greater than the minimally invasive approach in flexion, extension, left and right axial rotation. Moderate preservation of the posterior elements which occurs in the intralaminar approach generates greater segmental motion that the minimally invasive approach in extension, left and right axial rotation.ConclusionMinimization of bone and ligament removal associated with minimally invasive procedures results in greater preservation of the normal motion of the lumbar spine after surgery. This study suggests that preservation of the posterior spinal elements associated with minimally invasive surgery could minimize the risk of developing de novo postoperative changes in spinal alignment and/or acceleration of facet and disc degeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…