• European radiology · Apr 2020

    A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.

    • Jing Gong, Jiyu Liu, Wen Hao, Shengdong Nie, Bin Zheng, Shengping Wang, and Weijun Peng.
    • Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.
    • Eur Radiol. 2020 Apr 1; 30 (4): 1847-1855.

    ObjectiveTo develop a deep learning-based artificial intelligence (AI) scheme for predicting the likelihood of the ground-glass nodule (GGN) detected on CT images being invasive adenocarcinoma (IA) and also compare the accuracy of this AI scheme with that of two radiologists.MethodsFirst, we retrospectively collected 828 histopathologically confirmed GGNs of 644 patients from two centers. Among them, 209 GGNs are confirmed IA and 619 are non-IA, including 409 adenocarcinomas in situ and 210 minimally invasive adenocarcinomas. Second, we applied a series of pre-preprocessing techniques, such as image resampling, rescaling and cropping, and data augmentation, to process original CT images and generate new training and testing images. Third, we built an AI scheme based on a deep convolutional neural network by using a residual learning architecture and batch normalization technique. Finally, we conducted an observer study and compared the prediction performance of the AI scheme with that of two radiologists using an independent dataset with 102 GGNs.ResultsThe new AI scheme yielded an area under the receiver operating characteristic curve (AUC) of 0.92 ± 0.03 in classifying between IA and non-IA GGNs, which is equivalent to the senior radiologist's performance (AUC 0.92 ± 0.03) and higher than the score of the junior radiologist (AUC 0.90 ± 0.03). The Kappa value of two sets of subjective prediction scores generated by two radiologists is 0.6.ConclusionsThe study result demonstrates using an AI scheme to improve the performance in predicting IA, which can help improve the development of a more effective personalized cancer treatment paradigm.Key Points• The feasibility of using a deep learning method to predict the likelihood of the ground-glass nodule being invasive adenocarcinoma. • Residual learning-based CNN model improves the performance in classifying between IA and non-IA nodules. • Artificial intelligence (AI) scheme yields higher performance than radiologists in predicting invasive adenocarcinoma.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.