• Investigative radiology · May 2015

    Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation.

    • Cornelia Brendle, Holger Schmidt, Anja Oergel, Ilja Bezrukov, Mark Mueller, Christina Schraml, Christina Pfannenberg, Christian la Fougère, Konstantin Nikolaou, and Nina Schwenzer.
    • From the *Diagnostic and Interventional Radiology, Department of Radiology, Eberhard Karls University; †Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Department of Radiology, Eberhard Karls University; ‡Max Planck Institute for Intelligent Systems; and §Nuclear Medicine, Department of Radiology, Eberhard Karls University, Tuebingen, Germany.
    • Invest Radiol. 2015 May 1; 50 (5): 339-46.

    ObjectivesThe objective of this study was to evaluate the frequency and characteristics of artifacts in segmentation-based attenuation correction maps (μ-maps) of positron emission tomography/magnetic resonance (PET/MR) and their impact on PET interpretation and the standardized uptake value (SUV) quantification in normal tissue and lesions.Materials And MethodsThe study was approved by the local institutional review board. Attenuation maps of 100 patients with PET/MR and preceding PET/computed tomography examination were retrospectively inspected for artifacts (tracers: 2-deoxy-2-[¹⁸F]fluoro-D-glucose (¹⁸F-FDG), ¹¹C-Choline, ⁶⁸Ga-DOTATOC, ⁶⁸Ga-DOTATATE, ¹¹C-Methionine). The artifacts were subdivided into 9 different groups on the basis of their localization and appearance. The impact of μ-map artifacts in normal tissue and lesions on PET interpretation was evaluated qualitatively via visual analysis in synopsis with the non-attenuation-corrected (NAC) PET as well as quantitatively by comparing the SUV in artifact regions to reference regions.ResultsAttenuation map artifacts were found in 72% of the head/neck data sets, 61% of the thoracic data sets, 25% of the upper abdominal data sets, and 26% of the pelvic data sets. The most frequent localizations of the overall 276 artifacts were around metal implants (16%), in the lungs (19%), and outer body contours (31%). Twenty-one percent of all PET-avid lesions (38 of 184 lesions) were affected by artifacts in the majority without further consequences for visual PET interpretation. However, 9 PET-avid lung lesions were masked owing to μ-map artifacts and, thus, were only detectable on the NAC PET or additional MR imaging sequences. Quantitatively, μ-map artifacts led to significant SUV changes in areas with erroneous assignment of air instead of soft tissue (ie, metal artifacts) and of soft tissue instead of lung. Nevertheless, no change in diagnosis would have been caused by μ-map artifacts.ConclusionsAttenuation map artifacts that occur in a considerable percentage of PET/MR data sets have the potential to falsify PET quantification and visual PET interpretation. Nevertheless, on the basis of the present data, in the clinical interpretation setup, no changes in diagnosis due to μ-map artifacts may occur, especially when the μ-maps are checked for artifacts and PET/MR is read in synopsis with the NAC PET, if artifacts are present.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.