Investigative radiology
-
Investigative radiology · May 2015
Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation.
The objective of this study was to evaluate the frequency and characteristics of artifacts in segmentation-based attenuation correction maps (μ-maps) of positron emission tomography/magnetic resonance (PET/MR) and their impact on PET interpretation and the standardized uptake value (SUV) quantification in normal tissue and lesions. ⋯ Attenuation map artifacts that occur in a considerable percentage of PET/MR data sets have the potential to falsify PET quantification and visual PET interpretation. Nevertheless, on the basis of the present data, in the clinical interpretation setup, no changes in diagnosis due to μ-map artifacts may occur, especially when the μ-maps are checked for artifacts and PET/MR is read in synopsis with the NAC PET, if artifacts are present.
-
Investigative radiology · May 2015
Comparative StudyDiffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses.
This study is designed to examine the feasibility of diffusion-sensitized multishot split-echo rapid acquisition with relaxation enhancement (RARE) for diffusion-weighted ophthalmic imaging free of geometric distortions at 3.0 and 7.0 T in healthy volunteers and patients with intraocular masses. ⋯ This work demonstrates the capability of diffusion-sensitized ms-RARE to acquire high-contrast, high-spatial resolution, distortion-free images of the eye and the orbit at 3.0 and 7.0 T. Geometric distortions that are observed for EPI-based imaging approaches even at lower field strengths are offset by fast spin-echo-based imaging techniques. The benefits of this improvement can be translated into the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide guidance during diagnostic treatment of ophthalmological diseases.