• Comput Methods Programs Biomed · Aug 2018

    Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.

    • Zhiqiong Wang, Junchang Xin, Peishun Sun, Zhixiang Lin, Yudong Yao, and Xiaosong Gao.
    • Sino-Dutch Biomedical & Information Engineering School, Northeastern University, China.
    • Comput Methods Programs Biomed. 2018 Aug 1; 162: 197-209.

    Background And ObjectiveAmong all malignant tumors, lung cancer ranks in the top in mortality rate. Pulmonary nodule is the early manifestation of lung cancer, and plays an important role in its discovery, diagnosis and treatment. The technology of medical imaging has encountered a rapid development in recent years, thus the amount of pulmonary nodules can be discovered are on the raise, which means even tiny or minor changes in lung can be recorded by the CT images. This paper proposes a pulmonary nodule computer aided diagnosis (CAD) based on semi-supervised extreme learning machine(SS-ELM).MethodsFirst, the feature model based on the pulmonary nodules regions of lung CT images is established. After that, the same feature data sets have been put into ELM, support vector machine (SVM) methods, probabilistic neural network (PNN) and multilayer perceptron (MLP) so as to compare the performance of the methods. ELM turned out to have better performance in training time and testing accuracy compared with SVM, PNN and MLP. Then, we propose a pulmonary nodules computer aided diagnosis algorithm based on semi-supervised ELM (SS-ELM), which enables both certain class feature sets with labels and unlabeled feature sets to be input for training and computer aided diagnosing. This algorithm has provided a solution for the using of uncertain class data and improve the testing accuracy of benign and malignant diagnosis.Results1018 sets of thoracic CT images from the Lung Database Consortium and Image Database Resource Initiative (LIDC-IDRI) have been used in experiment in order to test the effectiveness of the algorithm. Compared with ELM, the pulmonary nodules CAD based on SS-ELM has better testing accuracy performance.ConclusionsWe have proposed a pulmonary nodule CAD system based on SS-ELM, which achieving better generalization performance at faster learning speed and higher testing accuracy than ELM, SVM, PNN and MLP. The SS-ELM based pulmonary nodules CAD has been proposed to solve the problem of uncertain class data using.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.