-
J Magn Reson Imaging · Jan 2020
Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
- Endre Grøvik, Darvin Yi, Michael Iv, Elizabeth Tong, Daniel Rubin, and Greg Zaharchuk.
- Department of Radiology, Stanford University, Stanford, California, USA.
- J Magn Reson Imaging. 2020 Jan 1; 51 (1): 175-182.
BackgroundDetecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging.PurposeTo demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep-learning approach based on a fully convolution neural network (CNN).Study TypeRetrospective.PopulationIn all, 156 patients with brain metastases from several primary cancers were included.Field Strength1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] SEQUENCE: Pretherapy MR images included pre- and postgadolinium T1 -weighted 3D fast spin echo (CUBE), postgadolinium T1 -weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR).AssessmentThe ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1-3), multiple (4-10), and many (>10) lesions.Statistical TestsNetwork performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups.ResultsThe area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1-3, 4-10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false-positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm3 lesion size limit).Data ConclusionA deep-learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy.Level Of Evidence3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175-182.© 2019 International Society for Magnetic Resonance in Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.