• Sensors (Basel) · Sep 2019

    Edible Gelatin Diagnosis Using Laser-Induced Breakdown Spectroscopy and Partial Least Square Assisted Support Vector Machine.

    • Hao Zhang, Shun Wang, Dongxian Li, Yanyan Zhang, Jiandong Hu, and Ling Wang.
    • College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China. hao.zhang@henau.edu.cn.
    • Sensors (Basel). 2019 Sep 28; 19 (19).

    AbstractEdible gelatin has been widely used as a food additive in the food industry, and illegal adulteration with industrial gelatin will cause serious harm to human health. The present work used laser-induced breakdown spectroscopy (LIBS) coupled with the partial least square-support vector machine (PLS-SVM) method for the fast and accurate estimation of edible gelatin adulteration. Gelatin samples with 11 different adulteration ratios were prepared by mixing pure edible gelatin with industrial gelatin, and the LIBS spectra were recorded to analyze their elemental composition differences. The PLS, SVM, and PLS-SVM models were separately built for the prediction of gelatin adulteration ratios, and the hybrid PLS-SVM model yielded a better performance than only the PLS and SVM models. Besides, four different variable selection methods, including competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MC-UVE), random frog (RF), and principal component analysis (PCA), were adopted to combine with the SVM model for comparative study; the results further demonstrated that the PLS-SVM model was superior to the other SVM models. This study reveals that the hybrid PLS-SVM model, with the advantages of low computational time and high prediction accuracy, can be employed as a preferred method for the accurate estimation of edible gelatin adulteration.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…