• NeuroImage · Oct 2009

    Comparative Study

    Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T.

    • Hunter R Underhill, Chun Yuan, and Vasily L Yarnykh.
    • Department of Radiology, University of Washington, Seattle, WA 98109, USA. hunterru@u.washington.edu
    • Neuroimage. 2009 Oct 1; 47 (4): 1568-78.

    AbstractCross-relaxation imaging (CRI) describes the magnetization transfer within tissues between mobile water protons and macromolecular protons. Whole-brain parametric maps of the principle kinetic components of magnetization transfer, the fraction of macromolecular protons (f) and the rate constant (k), revealed detailed anatomy of white matter (WM) fiber tracts at 1.5 T. In this study, CRI was first adapted to 3.0 T, and constraints for transverse relaxation times of water and macromolecular protons were identified to enable unbiased f and k estimation. Subsequently, whole-brain CRI and diffusion tensor imaging (DTI) were performed in five healthy subjects. The parameters f and k were compared to DTI indices (fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD)) across a range of anatomic regions. In WM, neither f nor k was significantly correlated to FA, RD, and AD. In contrast, both f (r=0.90 and r=-0.80) and k (r=0.92 and r=-0.89) in gray matter (GM) were strongly correlated to FA and RD, respectively. A moderate correlation between ADC and k (r=0.48) was identified in WM, while an inverse correlation was identified in GM (r=-0.72). The lack of association between CRI and FA in WM is consistent with differences in the underlying physical principles between techniques - fiber density vs. directionality, respectively. The association in GM may be attributable to variable axonal density unique to each structure. Our findings suggest that whole-brain CRI provides distinct quantitative information compared to DTI, and CRI parameters may prove constructive as biomarkers in neurological diseases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.