• Acta radiologica · Dec 2015

    Fat-suppressed, three-dimensional T1-weighted imaging using high-acceleration parallel acquisition and a dual-echo Dixon technique for gadoxetic acid-enhanced liver MRI at 3 T.

    • Jeong Hee Yoon, Jeong Min Lee, Mi Hye Yu, Eun Ju Kim, Joon Koo Han, and Byung Ihn Choi.
    • Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
    • Acta Radiol. 2015 Dec 1; 56 (12): 1454-62.

    BackgroundParallel imaging (PI) techniques are used for overcoming lower spatial and time resolution for magnetic resonance imaging (MRI). There is clinical need to overcome inevitable noise by decreased voxel size and signal-to-noise issue by using high-acceleration factor (AF).PurposeTo determine whether the combination of a modified Dixon three-dimensional (3D) T1-weighted (T1W) gradient echo technique (mDixon-3D-GRE) and high-acceleration ([HA], AF = 5) PI can provide breath-hold (BH) T1W imaging with better image quality than conventional fat-suppressed 3D-T1W-GRE (SPAIR-3D-GRE) for Gd-EOB-DTPA-enhanced liver MR.Material And MethodsThis retrospective study was approved by our institutional review board and informed consent was waived. There were 138 patients who underwent Gd-EOB-DTPA-enhanced liver MR at 3 T using either standard SPAIR-3D-GRE sequences with an AF of 2.6 (n = 68, Standard group) or mDixon-3D-GRE with an AF of 5 (n = 70, HA group). In the HA group, hepatobiliary phase was obtained three times using HA-mDixon-3D-GRE (AF = 5), HA-SPAIR-3D-GRE (AF = 5), and standard-SPAIR-3D-GRE (AF = 2.6). Image noise, quality, and anatomic depiction of dynamic phase were compared between standard and HA groups, and those of hepatobiliary phase were compared among the three image sets in HA group.ResultsAs for dynamic imaging, the HA-mDixon-3D-GRE images showed better anatomic details and overall image quality than standard-SPAIR-3D-GRE sequence (arterial phase: 3.56 ± 0.63 vs. 2.66 ± 0.69, P < 0.001). In the intra-individual comparison, HA-mDixon-3D-GRE provided better orang depiction and overall image quality than standard-SPAIR-3D-GRE (3.99 ± 0.75 vs. 3.0 ± 0.72, P < 0.001) and better fat suppression and significantly less noise than HA-SPAIR-3D-GRE (4.76 ± 0.43 vs. 3.71 ± 0.54, P < 0.001).ConclusionThe combined use of mDixon-3D-GRE sequence and high-acceleration PI provided better quality BH-T1W imaging compared with conventional SPAIR-3D-GRE for Gd-EOB-DTPA-enhanced liver MRI.© The Foundation Acta Radiologica 2014.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…