-
NeuroImage. Clinical · Jan 2019
Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage.
- Adam V Dvorak, Emil Ljungberg, Irene M Vavasour, Hanwen Liu, Poljanka Johnson, Alexander Rauscher, Kramer John L K JLK International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; School of Kine, Roger Tam, Li David K B DKB Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada; Medicine (Neurology), University of British Columbia, 2211 , Cornelia Laule, Laura Barlow, Hannah Briemberg, Alex L MacKay, Anthony Traboulsee, Piotr Kozlowski, Neil Cashman, and Shannon H Kolind.
- Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada. Electronic address: adam.dvorak@ubc.ca.
- Neuroimage Clin. 2019 Jan 1; 23: 101896.
BackgroundRapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T1 (qT1).ObjectiveTo demonstrate the feasibility of cervical cord GRASE rapid MWI in multiple sclerosis (MS), primary lateral sclerosis (PLS) and neuromyelitis optica spectrum disorder (NMO), with comparison to DTI and qT1 metrics.MethodsGRASE MWI, DTI and qT1 data were acquired in 2 PLS, 1 relapsing-remitting MS (RRMS), 1 primary-progressive MS (PPMS) and 2 NMO subjects, as well as 6 age (±3 yrs) and sex matched healthy controls (HC). Internal cord structure guided template registrations, used for region of interest (ROI) analysis. Z score maps were calculated for the difference between disease subject and mean HC metric values.ResultsPLS subjects had low myelin water fraction (MWF) in the lateral funiculi compared to HC. RRMS subject MWF was heterogeneous within the cord. The PPMS subject showed no trends in ROI results but had a region of low MWF Z score corresponding to a focal lesion. The NMO subject with a longitudinally extensive transverse myelitis lesion had low values for whole cord mean MWF of 12.8% compared to 24.3% (standard deviation 2.2%) for HC. The NMO subject without lesions also had low MWF compared to HC. DTI and qT1 metrics showed similar trends, corroborating the MWF results and providing complementary information.ConclusionGRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT1 measures.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.