• NeuroImage · Apr 2006

    Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data.

    • Jorge Jovicich, Silvester Czanner, Douglas Greve, Elizabeth Haley, Andre van der Kouwe, Randy Gollub, David Kennedy, Franz Schmitt, Gregory Brown, James Macfall, Bruce Fischl, and Anders Dale.
    • MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Radiology/CNY149-Room 2301, Charlestown, MA 02129, USA. jovicich@nmr.mgh.harvard.edu
    • Neuroimage. 2006 Apr 1; 30 (2): 436-43.

    AbstractLongitudinal and multi-site clinical studies create the imperative to characterize and correct technological sources of variance that limit image reproducibility in high-resolution structural MRI studies, thus facilitating precise, quantitative, platform-independent, multi-site evaluation. In this work, we investigated the effects that imaging gradient non-linearity have on reproducibility of multi-site human MRI. We applied an image distortion correction method based on spherical harmonics description of the gradients and verified the accuracy of the method using phantom data. The correction method was then applied to the brain image data from a group of subjects scanned twice at multiple sites having different 1.5 T platforms. Within-site and across-site variability of the image data was assessed by evaluating voxel-based image intensity reproducibility. The image intensity reproducibility of the human brain data was significantly improved with distortion correction, suggesting that this method may offer improved reproducibility in morphometry studies. We provide the source code for the gradient distortion algorithm together with the phantom data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…