-
- Anouk Marsman, Anna Lind, Esben Thade Petersen, Mads Andersen, and Vincent Oltman Boer.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark. Electronic address: anoukm@drcmr.dk.
- Neuroimage. 2021 Jun 1; 233: 117922.
AbstractThe major inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and the dominant antioxidant glutathione (GSH) both play a crucial role in brain functioning and are involved in several neurodegenerative and psychiatric diseases. Magnetic resonance spectroscopy (MRS) is a unique way to measure these neurometabolites non-invasively, but the measurement is highly sensitive to head movements, and especially in specific patient groups, motion stabilization in MRS could be valuable. Conventional MRS is acquired at relatively short echo times (TE), however, for unambiguous detection of GABA and GSH, spectral editing techniques are typically used. These depend on longer TEs and use frequency selective spectral editing pulses to separate the low-intensity peaks of GABA and GSH from overlapping resonances, but results in further increased motion sensitivity. Low-intensity metabolite peaks are usually edited one-by-one, however, simultaneous editing of multiple metabolites can be achieved using a Hadamard scheme, resulting in a substantial reduction in scan time. To investigate and correct for motion sensitivity in both conventional short-TE MRS (PRESS) and edited MRS (HERMES), we implemented a navigator-based prospective motion correction strategy including reacquisition of corrupted data. PRESS and HERMES spectra were acquired without motion, with motion with correction (repeated twice), and with motion without correction. Results indicate that when sufficient retrospective outlier removal is used, no significant differences in concentration and spectral quality were observed between motion conditions, even without prospective correction. HERMES spectral editing data showed to be more sensitive to motion, as significant differences in metabolite estimates and variability of spectral quality measures were observed for tCr, GABA+ and GSH when only retrospective outlier removal was applied. When using both prospective and retrospective correction, spectral quality was improved to almost the level of the no-motion acquisition. No differences in metabolite ratios for GABA and GSH could be observed when using motion correction. In conclusion, edited MRS showed to be more prone to motion artifacts, and prospective motion correction can restore most of the spectral quality in both conventional and edited MRS.Copyright © 2021. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.