• Neuroscience · Nov 2015

    Stimulatory effect of Pituitary Adenylate-Cyclase Activating Polypeptide 6-38, M65 and Vasoactive Intestinal Polypeptide 6-28 on trigeminal sensory neurones.

    • É Sághy, M Payrits, Zs Helyes, D Reglődi, E Bánki, G Tóth, A Couvineau, and É Szőke.
    • Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary. Electronic address: saghyeva@gmail.com.
    • Neuroscience. 2015 Nov 12;308:144-56.

    AbstractPituitary adenylate cyclase-activating polypeptide (PACAP) acts on G protein-coupled receptors: the specific PAC1 and VPAC1/VPAC2 receptors. PACAP6-38 was described as a potent PAC1/VPAC2 antagonist in several models, but recent studies reported its agonistic behaviors proposing novel receptorial mechanisms. Since PACAP in migraine is an important research tool, we investigated the effect of PACAP and its peptide fragments on trigeminal primary sensory neurons. Effect of the peptides was studied with ratiometric Ca-imaging technique using the fluorescent indicator fura-2 AM on primary cultures of rat and mouse trigeminal ganglia (TRGs) neurons. Specificity testing was performed on PAC1, VPAC1 and VPAC2 receptor-expressing cell lines with both fluorescent and radioactive Ca-uptake methods. Slowly increasing intracellular free calcium concentration [Ca(2+)]i was detected after PACAP1-38, PACAP1-27, vasoactive intestinal polypeptide (VIP) and the selective PAC1 receptor agonist maxadilan administration on TRG neurons, but interestingly, PACAP6-38, VIP6-28 and the PAC1 receptor antagonist M65 also caused similar activation. The VPAC2 receptor agonist BAY 55-9837 induced similar activation, while the VPAC1 receptor agonist Ala(11,22,28)VIP had no significant effect on [Ca(2+)]i. It was proven that the Ca(2+)-influx originated from intracellular stores using radioactive calcium-45 uptake experiment and Ca-free solution. On the specific receptor-expressing cell lines the antagonists inhibited the stimulating actions of the respective agonists, but had no effects by themselves. PACAP6-38, M65 and VIP6-28, which were described as antagonists in numerous studies in several model systems, act as agonists on TRG primary sensory neurons. Currently unknown receptors or splice variants linked to distinct signal transduction pathways might explain these differences.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.