• NMR in biomedicine · Dec 2017

    Simultaneous detection of glutathione and lactate using spectral editing at 3 T.

    • Kimberly L Chan, Karim Snoussi, EddenRichard A ERAERussell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA., and Peter B Barker.
    • Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
    • NMR Biomed. 2017 Dec 1; 30 (12).

    AbstractTwo spectral editing techniques for the simultaneous detection of glutathione (GSH) and lactate (Lac) in the human brain at 3 T are described and evaluated. These methods, 'sMEGA' (sinc-MEscher and GArwood) and 'DEW' (Double Editing With), were optimized to detect GSH and Lac simultaneously at 3 T using density-matrix simulations and validation in phantoms. Simulations to test for co-edited metabolites within the detected GSH region of the spectrum were also performed. In vivo data were acquired in the midline parietal region of seven subjects using both methods, and compared with conventional MEGA-PRESS (MEscher and GArwood-Point RESolved Spectroscopy) acquisitions of GSH and Lac. Simulations and phantom experiments showed that sMEGA and DEW had a high editing efficiency for both GSH and Lac. In the phantom, the editing efficiency of GSH was >88% relative to a conventional GSH MEGA-PRESS acquisition, whereas, for Lac, the editing efficiency was >95% relative to a conventional Lac MEGA-PRESS acquisition. Simulations also showed that the editing efficiency of both methods was comparable with separate MEGA-PRESS acquisitions of the same metabolites. In addition, simulations and in vivo spectra showed that, at a TE of 140 ms, there was a partial overlap between creatine (Cr) and GSH peaks, and that N-acetyl aspartate/N-acetyl aspartyl glutamate (NAA/NAAG) were sufficiently resolved from GSH. In vivo measurements showed that both sMEGA and DEW edited GSH and Lac reliably with the same editing efficiency as conventional MEGA-PRESS acquisitions of the same metabolites, with measured GSH integrals of 2.23 ± 0.51, 2.31 ± 0.38, 2.38 ± 0.53 and measured Lac integrals of 1.72 ± 0.67, 1.55 ± 0.35 and 1.53 ± 0.54 for MEGA-PRESS, DEW and sMEGA, respectively. Simultaneous detection of GSH and Lac using sMEGA and DEW is possible at 3 T with high editing efficiency.Copyright © 2017 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…