• Lasers Surg Med · Feb 2011

    A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers.

    • Chetan A Patil, Harish Kirshnamoorthi, Darrel L Ellis, Ton G van Leeuwen, and Anita Mahadevan-Jansen.
    • Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 137235, USA. c.patil@vanderbilt.edu
    • Lasers Surg Med. 2011 Feb 1; 43 (2): 143-51.

    Background And ObjectiveThe current standard for diagnosis of skin cancers is visual inspection followed by biopsy and histopathology. This process can be invasive, subjective, time consuming, and costly. Optical techniques, including Optical Coherence Tomography (OCT) and Raman Spectroscopy (RS), have been developed to perform non-invasive characterization of skin lesions based on either morphological or biochemical features of disease. The objective of this work is to report a clinical instrument capable of both morphological and biochemical characterization of skin cancers with RS-OCT.Materials And MethodsThe portable instrument utilizes independent 785 nm RS and 1,310 nm OCT system backbones. The two modalities are integrated in a 4″ (H) × 5″(W) × 8″(L) clinical probe. The probe enables sequential acquisition of co-registered OCT and RS data sets. The axial response of the RS collection in the skin was estimated using scattering phantoms. In addition, RS-OCT data from patients with cancerous and non-cancerous lesions are reported.ResultsThe RS-OCT instrument is capable of screening areas as large as 15 mm (transverse) by 2.4 mm (in depth) at up to 8 frames/second with OCT, and identifying locations to perform RS. RS signal is collected from a 44 µm transverse spot through a depth of approximately 530 µm. RS-OCT data sets from a superficial scar and a nodular BCC are reported to demonstrate the clinical potential of the instrument.ConclusionThe RS-OCT instrument reported here is capable of morphological and biochemical characterization of cancerous skin lesions in a clinical setting. OCT can visualize microstructural irregularities and perform an initial morphological analysis of the lesion. The images can be used to guide acquisition of biochemically specific Raman spectra. The two data sets can then be evaluated with respect to one another to take advantage of the mutually complimentary nature of RS and OCT.Copyright © 2011 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…