• Clinical imaging · May 2009

    High-resolution depiction of the cranial nerves in the posterior fossa (N III-N XII) with 2D fast spin echo and 3D gradient echo sequences at 3.0 T.

    • Frank Fischbach, Michael Müller, and Harald Bruhn.
    • Department of Radiology, Otto von Guericke University, Medical School, Magdeburg, Germany. frank.fischbach@med.ovgu.de
    • Clin Imaging. 2009 May 1; 33 (3): 169-74.

    PurposeThe objective of this study was to evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa by using T(2)-weighted fast spin echo (FSE) and fast imaging employing steady-state gradient echo (GRE) sequences as the most suitable techniques to visualize each of the cranial nerves.Materials And MethodsIn total, 20 nerves were investigated on MR images of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5-mm and 2-mm section thicknesses and GRE sequences acquired with a 3.0-T scanner and a quadrature head coil. The resulting MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale.ResultsIn general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. As expected, artifacts were prominent in high-field imaging of the posterior fossa with GRE sequences. Nevertheless, comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence, although with respect to structural identification and contrast according to the rating scale, observer scores were not significantly improved.ConclusionThe comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. Although image quality is impaired at GRE at high field strength, this sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction in order to illustrate complex relations of the brainstem.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…