• Nucl Med Commun · Jan 2017

    Observational Study

    Clinical evaluation of a block sequential regularized expectation maximization reconstruction algorithm in 18F-FDG PET/CT studies.

    • Bert-Ram Sah, Paul Stolzmann, Gaspar Delso, Scott D Wollenweber, Martin Hüllner, Yahya A Hakami, Marcelo A Queiroz, Felipe de Galiza Barbosa, Gustav K von Schulthess, Carsten Pietsch, and Patrick Veit-Haibach.
    • Departments of aNuclear Medicine bDiagnostic and Interventional Radiology cNeuroradiology, University Hospital Zurich dUniversity of Zurich, Zurich, Switzerland ePET Clinical Science, GE Healthcare, Waukesha, Wisconsin, USA.
    • Nucl Med Commun. 2017 Jan 1; 38 (1): 57-66.

    PurposeTo investigate the clinical performance of a block sequential regularized expectation maximization (BSREM) penalized likelihood reconstruction algorithm in oncologic PET/computed tomography (CT) studies.MethodsA total of 410 reconstructions of 41 fluorine-18 fluorodeoxyglucose-PET/CT studies of 41 patients with a total of 2010 lesions were analyzed by two experienced nuclear medicine physicians. Images were reconstructed with BSREM (with four different β values) or ordered subset expectation maximization (OSEM) algorithm with/without time-of-flight (TOF/non-TOF) corrections. OSEM reconstruction postfiltering was 4.0 mm full-width at half-maximum; BSREM did not use postfiltering. Evaluation of general image quality was performed with a five-point scale using maximum intensity projections. Artifacts (category 1), image sharpness (category 2), noise (category 3), and lesion detectability (category 4) were analyzed using a four-point scale. Size and maximum standardized uptake value (SUVmax) of lesions were measured by a third reader not involved in the image evaluation.ResultsBSREM-TOF reconstructions showed the best results in all categories, independent of different body compartments. In all categories, BSREM non-TOF reconstructions were significantly better than OSEM non-TOF reconstructions (P<0.001). In almost all categories, BSREM non-TOF reconstruction was comparable to or better than the OSEM-TOF algorithm (P<0.001 for general image quality, image sharpness, noise, and P=1.0 for artifact). Only in lesion detectability was OSEM-TOF significantly better than BSREM non-TOF (P<0.001). Both BSREM-TOF and BSREM non-TOF showed a decreasing SUVmax with increasing β values (P<0.001) and TOF reconstructions showed a significantly higher SUVmax than non-TOF reconstructions (P<0.001).ConclusionThe BSREM reconstruction algorithm showed a relevant improvement compared with OSEM reconstruction in PET/CT studies in all evaluated categories. BSREM might be used in clinical routine in conjunction with TOF to achieve better/higher image quality and lesion detectability or in PET/CT-systems without TOF-capability for enhancement of overall image quality as well.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…