-
- Ian Nauhaus and Dario L Ringach.
- Dept. of Biomedical Engineering, University of California, Los Angeles, CA 90095-1763, USA.
- J. Neurophysiol. 2007 May 1; 97 (5): 3781-9.
AbstractRecent theoretical models of primary visual cortex predict a relationship between receptive field properties and the location of the neuron within the orientation maps. Testing these predictions requires the development of new methods that allow the recording of single units at various locations across the orientation map. Here we present a novel technique for the precise alignment of functional maps and array recordings. Our strategy consists of first measuring the orientation maps in V1 using intrinsic optical imaging. A micromachined electrode array is subsequently implanted in the same patch of cortex for electrophysiological recordings, including the measurement of orientation tuning curves. The location of the array within the map is obtained by finding the position that maximizes the agreement between the preferred orientations measured electrically and optically. Experimental results of the alignment procedure from two implementations in monkey V1 are presented. The estimated accuracy of the procedure is evaluated using computer simulations. The methodology should prove useful in studying how signals from the local neighborhood of a neuron, thought to provide a dominant feedback signal, shape the receptive field properties in V1.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.