• J. Mol. Med. · Apr 2013

    Review

    Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme.

    • Yasushi Soda, Chad Myskiw, Amy Rommel, and Inder M Verma.
    • Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
    • J. Mol. Med. 2013 Apr 1; 91 (4): 439-48.

    AbstractGlioblastoma multiforme (GBM) is the most malignant brain tumor and highly resistant to intensive combination therapies. GBM is one of the most vascularized tumors and vascular endothelial growth factor (VEGF) produced by tumor cells is a major factor regulating angiogenesis. Successful results of preclinical studies of anti-angiogenic therapies using xenograft mouse models of human GBM cell lines encouraged clinical studies of anti-angiogenic drugs, such as bevacizumab (Avastin), an anti-VEGF antibody. However, these clinical studies have shown that most patients become resistant to anti-VEGF therapy after an initial response. Recent studies have revealed some resistance mechanisms against anti-VEGF therapies involved in several types of cancer. In this review, we address mechanisms of angiogenesis, including unique features in GBMs, and resistance to anti-VEGF therapies frequently observed in GBM. Enhanced invasiveness is one such resistance mechanism and recent works report the contribution of activated MET signaling induced by inhibition of VEGF signaling. On the other hand, tumor cell-originated neovascularization including tumor-derived endothelial cell-induced angiogenesis and vasculogenic mimicry has been suggested to be involved in the resistance to anti-VEGF therapy. Therefore, these mechanisms should be targeted in addition to anti-angiogenic therapies to achieve better results for patients with GBM.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…