• NeuroImage · Feb 2018

    Cerebral peak alpha frequency predicts individual differences in pain sensitivity.

    • Andrew J Furman, Timothy J Meeker, Jeremy C Rietschel, Sooyoung Yoo, Janusiya Muthulingam, Mariya Prokhorenko, Michael L Keaser, Ronald N Goodman, Ali Mazaheri, and David A Seminowicz.
    • Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, United States; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, 21201, United States.
    • Neuroimage. 2018 Feb 15; 167: 203-210.

    AbstractThe identification of neurobiological markers that predict individual predisposition to pain are not only important for development of effective pain treatments, but would also yield a more complete understanding of how pain is implemented in the brain. In the current study using electroencephalography (EEG), we investigated the relationship between the peak frequency of alpha activity over sensorimotor cortex and pain intensity during capsaicin-heat pain (C-HP), a prolonged pain model known to induce spinal central sensitization in primates. We found that peak alpha frequency (PAF) recorded during a pain-free period preceding the induction of prolonged pain correlated with subsequent pain intensity reports: slower peak frequency at pain-free state was associated with higher pain during the prolonged pain condition. Moreover, the degree to which PAF decreased between pain-free and prolonged pain states was correlated with pain intensity. These two metrics were statistically uncorrelated and in combination were able to account for 50% of the variability in pain intensity. Altogether, our findings suggest that pain-free state PAF over relevant sensory systems could serve as a marker of individual predisposition to prolonged pain. Moreover, slowing of PAF in response to prolonged pain could represent an objective marker for subjective pain intensity. Our findings potentially lead the way for investigations in clinical populations in which alpha oscillations and the brain areas contributing to their generation are used in identifying and formulating treatment strategies for patients more likely to develop chronic pain.Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…