-
Review
Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence.
- William T Tran, Ali Sadeghi-Naini, Fang-I Lu, Sonal Gandhi, Nicholas Meti, Muriel Brackstone, Eileen Rakovitch, and Belinda Curpen.
- Department of Radiation Oncology, 71545Sunnybrook Health Sciences Centre, Toronto, Canada.
- Can Assoc Radiol J. 2021 Feb 1; 72 (1): 98-108.
AbstractBreast cancer screening has been shown to significantly reduce mortality in women. The increased utilization of screening examinations has led to growing demands for rapid and accurate diagnostic reporting. In modern breast imaging centers, full-field digital mammography (FFDM) has replaced traditional analog mammography, and this has opened new opportunities for developing computational frameworks to automate detection and diagnosis. Artificial intelligence (AI), and its subdomain of deep learning, is showing promising results and improvements on diagnostic accuracy, compared to previous computer-based methods, known as computer-aided detection and diagnosis.In this commentary, we review the current status of computational radiology, with a focus on deep neural networks used in breast cancer screening and diagnosis. Recent studies are developing a new generation of computer-aided detection and diagnosis systems, as well as leveraging AI-driven tools to efficiently interpret digital mammograms, and breast tomosynthesis imaging. The use of AI in computational radiology necessitates transparency and rigorous testing. However, the overall impact of AI to radiology workflows will potentially yield more efficient and standardized processes as well as improve the level of care to patients with high diagnostic accuracy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.