Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
-
Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)-based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. ⋯ However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.
-
Review
Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence.
Breast cancer screening has been shown to significantly reduce mortality in women. The increased utilization of screening examinations has led to growing demands for rapid and accurate diagnostic reporting. In modern breast imaging centers, full-field digital mammography (FFDM) has replaced traditional analog mammography, and this has opened new opportunities for developing computational frameworks to automate detection and diagnosis. ⋯ Recent studies are developing a new generation of computer-aided detection and diagnosis systems, as well as leveraging AI-driven tools to efficiently interpret digital mammograms, and breast tomosynthesis imaging. The use of AI in computational radiology necessitates transparency and rigorous testing. However, the overall impact of AI to radiology workflows will potentially yield more efficient and standardized processes as well as improve the level of care to patients with high diagnostic accuracy.
-
Review
Exploring the Role of Artificial Intelligence in an Emergency and Trauma Radiology Department.
Emergency and trauma radiologists, emergency department's physicians and nurses, researchers, departmental leaders, and health policymakers have attempted to discover efficient approaches to enhance the provision of quality patient care. There are increasing expectations for radiology practices to deliver a dedicated emergency radiology service providing 24/7/365 on-site attending radiologist coverage. Emergency radiologists (ERs) are pressed to meet the demand of increased imaging volume, provide accurate reports, maintain a lower proportion of discrepancy rate, and with a rapid report turnaround time of finalized reports. ⋯ This exploratory narrative serves the present-day health leadership's information needs by proposing an AI supported and radiologist centered framework depicting the work flow within a department. It is suspected that the use of such a framework, if efficacious, could provide considerable benefits for patient safety and quality of care provided. Additionally, alleviating radiologist burnout and decreasing healthcare costs over time.
-
To assess the interobserver variability between chest radiologists in the interpretation of the Radiological Society of North America (RSNA) expert consensus statement reporting guidelines in patients with suspected coronavirus disease 2019 (COVID-19) pneumonia in a setting with limited reverse transcription polymerase chain reaction testing availability. ⋯ The RSNA expert consensus statement on reporting chest CT findings related to COVID-19 demonstrates substantial to almost perfect interobserver agreement among chest radiologists in a relatively large cohort of patients with clinically suspected COVID-19. It therefore serves as a reliable reference framework for radiologists to accurately communicate their level of suspicion based on the presence of evidence-based objective findings.
-
Review
Applications of Artificial Intelligence in Musculoskeletal Imaging: From the Request to the Report.
Artificial intelligence (AI) will transform every step in the imaging value chain, including interpretive and noninterpretive components. Radiologists should familiarize themselves with AI developments to become leaders in their clinical implementation. ⋯ Noninterpretive tasks which may be assisted by AI include the ordering of appropriate imaging tests, automatic exam protocoling, optimized scheduling, shorter magnetic resonance imaging acquisition time, computed tomography imaging with reduced artifact and radiation dose, and new methods of generation and utilization of radiology reports. Applications of AI for image interpretation consist of the determination of bone age, body composition measurements, screening for osteoporosis, identification of fractures, evaluation of segmental spine pathology, detection and temporal monitoring of osseous metastases, diagnosis of primary bone and soft tissue tumors, and grading of osteoarthritis.