• Magn Reson Imaging · Jan 2020

    Randomized Controlled Trial Multicenter Study

    Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.

    • Ponnada A Narayana, Ivan Coronado, Sheeba J Sujit, Xiaojun Sun, Jerry S Wolinsky, and Refaat E Gabr.
    • Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, United States of America. Electronic address: Ponnada.a.narayana@uth.tmc.edu.
    • Magn Reson Imaging. 2020 Jan 1; 65: 8-14.

    BackgroundMagnetic resonance images with multiple contrasts or sequences are commonly used for segmenting brain tissues, including lesions, in multiple sclerosis (MS). However, acquisition of images with multiple contrasts increases the scan time and complexity of the analysis, possibly introducing factors that could compromise segmentation quality.ObjectiveTo investigate the effect of various combinations of multi-contrast images as input on the segmented volumes of gray (GM) and white matter (WM), cerebrospinal fluid (CSF), and lesions using a deep neural network.MethodsU-net, a fully convolutional neural network was used to automatically segment GM, WM, CSF, and lesions in 1000 MS patients. The input to the network consisted of 15 combinations of FLAIR, T1-, T2-, and proton density-weighted images. The Dice similarity coefficient (DSC) was evaluated to assess the segmentation performance. For lesions, true positive rate (TPR) and false positive rate (FPR) were also evaluated. In addition, the effect of lesion size on lesion segmentation was investigated.ResultsHighest DSC was observed for all the tissue volumes, including lesions, when the input was combination of all four image contrasts. All other input combinations that included FLAIR also provided high DSC for all tissue classes. However, the quality of lesion segmentation showed strong dependence on the input images. The DSC and TPR values for inputs with the four contrast combination and FLAIR alone were very similar, but FLAIR showed a moderately higher FPR for lesion size <100 μl. For lesions smaller than 20 μl all image combinations resulted in poor performance. The segmentation quality improved with lesion size.ConclusionsBest performance for segmented tissue volumes was obtained with all four image contrasts as the input, and comparable performance was attainable with FLAIR only as the input, albeit with a moderate increase in FPR for small lesions. This implies that acquisition of only FLAIR images provides satisfactory tissue segmentation. Lesion segmentation was poor for very small lesions and improved rapidly with lesion size.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.