-
AJR Am J Roentgenol · Dec 2017
Comparative StudyComparison of Prostate Imaging Reporting and Data System versions 1 and 2 for the Detection of Peripheral Zone Gleason Score 3 + 4 = 7 Cancers.
- Satheesh Krishna, Matthew McInnes, Christopher Lim, Robert Lim, Shaheed W Hakim, Trevor A Flood, and Nicola Schieda.
- 1 Department of Medical Imaging, The Ottawa Hospital, The University of Ottawa, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.
- AJR Am J Roentgenol. 2017 Dec 1; 209 (6): W365-W373.
ObjectiveThe objective of our study was to compare Prostate Imaging Reporting and Data System version 1 (PI-RADSv1) and Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) for the detection of peripheral zone (PZ) Gleason score 3 + 4 = 7 cancers.Materials And MethodsForty-seven consecutive patients with 52 PZ Gleason score 3 + 4 = 7 cancers that were 0.5 cm3 or larger underwent radical prostatectomy (RP) and 3-T MRI between 2012 and 2015. Two blinded radiologists (readers 1 and 2) retrospectively assigned PI-RADSv1 sequence (T2-weighted imaging, DWI, dynamic contrast-enhanced MRI [DCE-MRI]) and sum scores and PI-RADSv2 assessment categories. A third blinded radiologist (reader 3) measured apparent diffusion coefficient (ADC) ratio (ADC of tumor / ADC of normal PZ) using RP-MRI maps. Sensitivity, false-positive rate, and overall accuracy were compared using McNemar test. Pearson correlation was performed.ResultsUsing PI-RADSv1, reader 1 detected 86.5% (45/52) of the cancers and reader 2, 76.9% (40/52) of the cancers. Using PI-RADSv2, reader 1 detected 78.9% (41/52) and reader 2, 67.3% (35/52). Reader 1 detected 7.7% (4/52) and reader 2 detected 9.6% (5/52) more tumors using PI-RADSv1 due to T2-weighted imaging score ≥ 4 or DCE-MRI score ≥ 3. Sensitivity was higher for PI-RADSv1 (p = 0.01 and 0.03, readers 1 and 2). False-positive rates were higher with PI-RADSv1 than with PI-RADSv2 (1.8% vs 0.9% for reader 1; 3.6% vs 1.8% for reader 2) without significant differences in false-positive rate (p = 0.41 and 0.25) or overall accuracy (p = 0.06 and 0.23). PI-RADSv1 sum scores correlated strongly with PI-RADSv2 categories (B = 0.78-0.93, p < 0.0001). The mean ADC ratio was 0.61 ± 0.14 mm2/s with no difference between visible and nonvisible tumors (p = 0.06-0.5). Interobserver agreement was moderate for PI-RADSv2 (κ = 0.41) and ranged from slight to substantial for PI-RADSv1 (T2-weighted imaging, κ = 0.32; DWI, κ = 0.52; DCE-MRI, κ = 0.13).ConclusionThere was no difference in overall detection of cancers comparing PI-RADSv1 and PI-RADSv2; however, PI-RADSv1 sequence scores on T2-weighted imaging and DCE-MRI detected approximately 10% more tumors that were otherwise underestimated on DWI and using PI-RADSv2 decision-tree rules.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.