-
- Le Zhang, Jian Sun, and Qiang Zheng.
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China. lezhang0829@stu.xjtu.edu.cn.
- Sensors (Basel). 2018 Oct 29; 18 (11).
AbstractThe recognition of three-dimensional (3D) lidar (light detection and ranging) point clouds remains a significant issue in point cloud processing. Traditional point cloud recognition employs the 3D point clouds from the whole object. Nevertheless, the lidar data is a collection of two-and-a-half-dimensional (2.5D) point clouds (each 2.5D point cloud comes from a single view) obtained by scanning the object within a certain field angle by lidar. To deal with this problem, we initially propose a novel representation which expresses 3D point clouds using 2.5D point clouds from multiple views and then we generate multi-view 2.5D point cloud data based on the Point Cloud Library (PCL). Subsequently, we design an effective recognition model based on a multi-view convolutional neural network. The model directly acts on the raw 2.5D point clouds from all views and learns to get a global feature descriptor by fusing the features from all views by the view fusion network. It has been proved that our approach can achieve an excellent recognition performance without any requirement for three-dimensional reconstruction and the preprocessing of point clouds. In conclusion, this paper can effectively solve the recognition problem of lidar point clouds and provide vital practical value.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.