• NMR in biomedicine · Apr 2018

    Comparative Study

    Comparison of reproducibility of single voxel spectroscopy and whole-brain magnetic resonance spectroscopy imaging at 3T.

    • Yue Zhang, Edward Taub, Nouha Salibi, Gitendra Uswatte, Andrew A Maudsley, Sulaiman Sheriff, Brent Womble, Victor W Mark, and David C Knight.
    • Department of Psychology, University of Alabama at Birmingham, AL, USA.
    • NMR Biomed. 2018 Apr 1; 31 (4): e3898.

    AbstractTo date, single voxel spectroscopy (SVS) is the most commonly used MRS technique. SVS is relatively easy to use and provides automated and immediate access to the resulting spectra. However, it is also limited in spatial coverage. A new and very promising MRS technique allows for whole-brain MR spectroscopic imaging (WB-MRSI) with much improved spatial resolution. Establishing the reproducibility of data obtained using SVS and WB-MRSI is an important first step for using these techniques to evaluate longitudinal changes in metabolite concentration. The purpose of this study was to assess and directly compare the reproducibility of metabolite quantification at 3T using SVS and WB-MRSI in 'hand-knob' areas of motor cortices and hippocampi in healthy volunteers. Ten healthy adults were scanned using both SVS and WB-MRSI on three occasions one week apart. N-acetyl aspartate (NAA), creatine (Cr), choline (Cho) and myo-inositol (mI) were quantified using SVS and WB-MRSI with reference to both Cr and H2 O. The reproducibility of each technique was evaluated using the coefficient of variation (CV), and the correspondence between the two techniques was assessed using Pearson correlation analysis. The measured mean (range) intra-subject CVs for SVS were 5.90 (2.65-10.66)% for metabolites (i.e. NAA, Cho, mI) relative to Cr, and 8.46 (4.21-21.07)% for metabolites (NAA, Cr, Cho, mI) relative to H2 O. The mean (range) CVs for WB-MRSI were 7.56 (2.78-11.41)% for metabolites relative to Cr, and 7.79 (4.57-14.11)% for metabolites relative to H2 O. Significant positive correlations were observed between metabolites quantified using SVS and WB-MRSI techniques when the Cr but not H2 O reference was used. The results demonstrate that reproducibilities of SVS and WB-MRSI are similar for quantifying the four major metabolites (NAA, Cr, Cho, mI); both SVS and WB-MRSI exhibited good reproducibility. Our findings add reference information for choosing the appropriate 1 H-MRS technique in future studies.Copyright © 2018 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.