• NeuroImage · Nov 2020

    Detection of functional networks within white matter using independent component analysis.

    • Yali Huang, Yang Yang, Lei Hao, Xuefang Hu, Peiguang Wang, Zhaohua Ding, Jia-Hong Gao, and John C Gore.
    • College of Electronics and Information Engineering, Hebei University, Baoding 071002, China.
    • Neuroimage. 2020 Nov 15; 222: 117278.

    AbstractSpontaneous fluctuations in MRI signals from gray matter (GM) in the brain are interpreted as originating from variations in neural activity, and their inter-regional correlations may be analyzed to reveal functional connectivity. However, most studies of intrinsic neuronal activity have ignored the spontaneous fluctuations that also arise in white matter (WM). In this work, we explore spontaneous fluctuations in resting state MRI signals in WM based on spatial independent component analyses (ICA), a data-driven approach that separates signals into independent sources without making specific modeling assumptions. ICA has become widely accepted as a valuable approach for identifying functional connectivity within cortex but has been rarely applied to derive equivalent structures within WM. Here, BOLD signal changes in WM of a group of subjects performing motor tasks were first detected using ICA, and a spatial component whose time course was consistent with the task was found, demonstrating the analysis is sensitive to evoked BOLD signals in WM. Secondly, multiple spatial components were derived by applying ICA to identify those voxels in WM whose MRI signals showed similar temporal behaviors in a resting state. These functionally-related structures are grossly symmetric and coincide with corresponding tracts identified from diffusion MRI. Finally, functional connectivity was quantified by calculating correlations between pairs of structures to explore the synchronicity of resting state BOLD signals across WM regions, and the experimental results revealed that there exist two distinct groupings of functional correlations in WM tracts at rest. Our study provides further insights into the nature of activation patterns, functional responses and connectivity in WM, and support previous suggestions that BOLD signals in WM show similarities with cortical activations and are characterized by distinct underlying structures in tasks and at rest.Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…