• NMR in biomedicine · Nov 2016

    Time-efficient measurement of multi-phase arterial spin labeling MR signal in white matter.

    • X Zhang, I Ronen, H E Kan, W M Teeuwisse, and M J P van Osch.
    • Department of Radiology, C. J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, the Netherlands. x.zhang.radi@gmail.com.
    • NMR Biomed. 2016 Nov 1; 29 (11): 1519-1525.

    AbstractWhite matter (WM) perfusion has great potential as a physiological biomarker in many neurological diseases. Although it has been demonstrated previously that arterial spin labeling magnetic resonance imaging (ASL-MRI) enables the detection of the perfusion-weighted signal in most voxels in WM, studies of cerebral blood flow (CBF) in WM by ASL-MRI are relatively scarce because of its particular challenges, such as significantly lower perfusion and longer arterial transit times relative to gray matter (GM). Recently, ASL with a spectroscopic readout has been proposed to enhance the sensitivity for the measurement of WM perfusion. However, this approach suffers from long acquisition times, especially when acquiring multi-phase ASL datasets to improve CBF quantification. Furthermore, the potential increase in the signal-to-noise ratio (SNR) by spectroscopic readout compared with echo planar imaging (EPI) readout has not been proven experimentally. In this study, we propose the use of time-encoded pseudo-continuous ASL (te-pCASL) with single-voxel point-resolved spectroscopy (PRESS) readout to quantify WM cerebral perfusion in a more time-efficient manner. Results are compared with te-pCASL with a conventional EPI readout for both WM and GM perfusion measurements. Perfusion measurements by te-pCASL PRESS and conventional EPI showed no significant difference for quantitative WM CBF values (Student's t-test, p = 0.19) or temporal SNR (p = 0.33 and p = 0.81 for GM and WM, respectively), whereas GM CBF values (p = 0.016) were higher using PRESS than EPI readout. WM CBF values were found to be 18.2 ± 7.6 mL/100 g/min (PRESS) and 12.5 ± 5.5 mL/100 g/min (EPI), whereas GM CBF values were found to be 77.1 ± 11.2 mL/100 g/min (PRESS) and 53.6 ± 9.6 mL/100 g/min (EPI). This study demonstrates the feasibility of te-pCASL PRESS for the quantification of WM perfusion changes in a highly time-efficient manner, but it does not result in improved temporal SNR, as does traditional te-pCASL EPI, which remains the preferred option because of its flexibility in use.Copyright © 2016 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.