• J Biomed Inform · Aug 2009

    Cognitive simulators for medical education and training.

    • Kanav Kahol, Mithra Vankipuram, and Marshall L Smith.
    • Human Machine Symbiosis Laboratory, Center for Cognition and Decision Making, Department of Biomedical Informatics, School of Computing and Informatics, Arizona State University, Tempe, 45 N 5th Street #235, Phoenix, AZ 85004, USA. kanav@asu.edu
    • J Biomed Inform. 2009 Aug 1; 42 (4): 593-604.

    AbstractSimulators for honing procedural skills (such as surgical skills and central venous catheter placement) have proven to be valuable tools for medical educators and students. While such simulations represent an effective paradigm in surgical education, there is an opportunity to add a layer of cognitive exercises to these basic simulations that can facilitate robust skill learning in residents. This paper describes a controlled methodology, inspired by neuropsychological assessment tasks and embodied cognition, to develop cognitive simulators for laparoscopic surgery. These simulators provide psychomotor skill training and offer the additional challenge of accomplishing cognitive tasks in realistic environments. A generic framework for design, development and evaluation of such simulators is described. The presented framework is generalizable and can be applied to different task domains. It is independent of the types of sensors, simulation environment and feedback mechanisms that the simulators use. A proof of concept of the framework is provided through developing a simulator that includes cognitive variations to a basic psychomotor task. The results of two pilot studies are presented that show the validity of the methodology in providing an effective evaluation and learning environments for surgeons.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.