-
- Yu-Wei Tang and Teng-Yi Huang.
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.
- Neuroimage. 2011 Apr 15; 55 (4): 1587-92.
AbstractSignal loss in gradient-echo echo planar imaging (GE-EPI) due to susceptibility-induced magnetic field inhomogeneity makes it difficult to assess the blood oxygenation level-dependent (BOLD) effect in fMRI investigations. The z-shim method that applies an additional gradient moment is one of the more popular methods of compensating for GE-EPI signal loss. However, this method requires a calibration sweep scan and post-processing to identify the optimal z-shim gradients, which slows down fMRI experiments. This study attempts to decrease the calibration time by introducing a real-time feedback framework. Creating a feedback loop between the image processing and the GE-EPI pulse sequence converts the calibration of z-shim gradients to an optimization problem, which can be accelerated by local search methods. This study proposes an interleaved scan that allows the simultaneous optimization of two z-shim gradient moments and allocates sufficient processing time for networking and computation. The z-shim compensated images obtained by the proposed real-time method are comparable to those created by the sweep method. The optimization procedure for obtaining negative and positive gradient moments generally requires about twenty GE-EPI repetitions. In conclusion, the proposed z-shim method includes an automated real-time framework to achieve a significant reduction in susceptibility-induced signal loss in GE-EPI with a minimal increase in calibration time. The proposed procedure is fully automatic and compatible with conventional GE-EPI and can thus serve as a pre-adjustment module in EPI-based fMRI researches.Copyright © 2011 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.