-
AJR Am J Roentgenol · Dec 2020
Meta AnalysisSystematic Review and Meta-Analysis on the Value of Chest CT in the Diagnosis of Coronavirus Disease (COVID-19): Sol Scientiae, Illustra Nos.
- AdamsHugo J AHJADepartment of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands., Thomas C Kwee, Derya Yakar, Michael D Hope, and Robert M Kwee.
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- AJR Am J Roentgenol. 2020 Dec 1; 215 (6): 1342-1350.
AbstractOBJECTIVE. The purpose of this article is to systematically review and meta-analyze the diagnostic accuracy of chest CT in detecting coronavirus disease (COVID-19). MATERIALS AND METHODS. MEDLINE was systematically searched for publications on the diagnostic performance of chest CT in detecting COVID-19. Methodologic quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Meta-analysis was performed using a bivariate random-effects model. RESULTS. Six studies were included, comprising 1431 patients. All six studies included patients at high risk of COVID-19, and five studies explicitly reported that they included only symptomatic patients. Mean prevalence of COVID-19 was 47.9% (range, 27.6-85.4%). High or potential risk of bias was present throughout all QUADAS-2 domains in all six studies. Sensitivity ranged from 92.9% to 97.0%, and specificity ranged from 25.0% to 71.9%, with pooled estimates of 94.6% (95% CI, 91.9-96.4%) and 46.0% (95% CI, 31.9-60.7%), respectively. The included studies were statistically homogeneous in their estimates of sensitivity (p = 0.578) and statistically heterogeneous in their estimates of specificity (p < 0.001). CONCLUSION. Diagnostic accuracy studies on chest CT in COVID-19 suffer from methodologic quality issues. Chest CT appears to have a relatively high sensitivity in symptomatic patients at high risk of COVID-19, but it cannot exclude COVID-19. Specificity is poor. These data, along with other local factors such as COVID-19 prevalence, available real-time reverse transcriptase-polymerase chain reaction tests, staff, hospital, and CT scanning capacity, can be useful to healthcare professionals and policy makers to decide on the utility of chest CT for COVID-19 detection in the hospital setting.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.