-
- Maitreyi Rathod, Arijit Mal, and Abhijit De.
- KS325, Molecular Functional Imaging Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre(TMC), Navi Mumbai, Maharashtra, India.
- Methods Mol. Biol. 2018 Jan 1; 1790: 51-74.
AbstractGenetic reporter systems provide a good alternative to monitor cellular functions in vitro and in vivo and are contributing immensely in experimental research. Reporters like fluorescence and bioluminescence genes, which support optical measurements, provide exquisite sensitivity to the assay systems. In recent years several activatable strategies have been developed, which can relay specialized molecular functions from inside the cells. The application of bioluminescence resonance energy transfer (BRET) is one such strategy that has been proved to be extremely valuable as an in vitro or in vivo assay to measure dynamic events such as protein-protein interactions (PPIs).The BRET assay using RLuc-YFP was introduced in biological research in the late 1990s and demonstrated the interaction of two proteins involved in circadian rhythm. Since then, BRET has become a popular genetic reporter-based assay for PPI studies due to several inherent attributes that facilitate high-throughput assay development such as rapid and fairly sensitive ratio-metric measurement, the assessment of PPI irrespective of protein location in cellular compartment and cost effectiveness. In BRET-based screening, within a defined proximity range of 10-100 Å, the excited energy state of the luminescent molecule excites the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP or TurboFP as acceptor, have been reported for use.In recent years, the applicability of BRET has been greatly enhanced by the adaptation of the assay to multiple detection devices such as a luminescence plate reader, a bioluminescence microscope and a small animal optical imaging platform. Apart from quantitative measurement studies of PPIs and protein dimerization, molecular spectral imaging has expanded the scope for fast screening of pharmacological compounds that modulate PPIs by unifying in vitro, live cell and in vivo animal/plant measurement, all using one assay. Using examples from the literature, we will describe methods to perform in vitro and in vivo BRET imaging experiments and some of its applications.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.