• NeuroImage · Oct 2008

    Sparse linear regression for reconstructing muscle activity from human cortical fMRI.

    • G Ganesh, E Burdet, M Haruno, and M Kawato.
    • Department of Computational Neurobiology, ATR International, Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Keihanna Science City, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan. gganesh@atr.jp
    • Neuroimage. 2008 Oct 1; 42 (4): 1463-72.

    AbstractIn humans, it is generally not possible to use invasive techniques in order to identify brain activity corresponding to activity of individual muscles. Further, it is believed that the spatial resolution of non-invasive brain imaging modalities is not sufficient to isolate neural activity related to individual muscles. However, this study shows that it is possible to reconstruct muscle activity from functional magnetic resonance imaging (fMRI). We simultaneously recorded surface electromyography (EMG) from two antagonist muscles and motor cortices activity using fMRI, during an isometric task requiring both reciprocal activation and co-activation of the wrist muscles. Bayesian sparse regression was used to identify the parameters of a linear mapping from the fMRI activity in areas 4 (M1) and 6 (pre-motor, SMA) to EMG, and to reconstruct muscle activity in an independent test data set. The mapping obtained by the sparse regression algorithm showed significantly better generalization than those obtained from algorithms commonly used in decoding, i.e., support vector machine and least square regression. The two voxel sets corresponding to the activity of the antagonist muscles were intermingled but disjoint. They were distributed over a wide area of pre-motor cortex and M1 and not limited to regions generally associated with wrist control. These results show that brain activity measured by fMRI in humans can be used to predict individual muscle activity through Bayesian linear models, and that our algorithm provides a novel and non-invasive tool to investigate the brain mechanisms involved in motor control and learning in humans.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.