• J. Med. Internet Res. · Aug 2015

    Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning.

    • Heather Cole-Lewis, Arun Varghese, Amy Sanders, Mary Schwarz, Jillian Pugatch, and Erik Augustson.
    • ICF International, Rockville, MD, United States.
    • J. Med. Internet Res. 2015 Aug 25; 17 (8): e208.

    BackgroundElectronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public's knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions.ObjectiveOur aim was to establish a supervised machine learning algorithm to build predictive classification models that assess Twitter data for a range of factors related to e-cigarettes.MethodsManual content analysis was conducted for 17,098 tweets. These tweets were coded for five categories: e-cigarette relevance, sentiment, user description, genre, and theme. Machine learning classification models were then built for each of these five categories, and word groupings (n-grams) were used to define the feature space for each classifier.ResultsPredictive performance scores for classification models indicated that the models correctly labeled the tweets with the appropriate variables between 68.40% and 99.34% of the time, and the percentage of maximum possible improvement over a random baseline that was achieved by the classification models ranged from 41.59% to 80.62%. Classifiers with the highest performance scores that also achieved the highest percentage of the maximum possible improvement over a random baseline were Policy/Government (performance: 0.94; % improvement: 80.62%), Relevance (performance: 0.94; % improvement: 75.26%), Ad or Promotion (performance: 0.89; % improvement: 72.69%), and Marketing (performance: 0.91; % improvement: 72.56%). The most appropriate word-grouping unit (n-gram) was 1 for the majority of classifiers. Performance continued to marginally increase with the size of the training dataset of manually annotated data, but eventually leveled off. Even at low dataset sizes of 4000 observations, performance characteristics were fairly sound.ConclusionsSocial media outlets like Twitter can uncover real-time snapshots of personal sentiment, knowledge, attitudes, and behavior that are not as accessible, at this scale, through any other offline platform. Using the vast data available through social media presents an opportunity for social science and public health methodologies to utilize computational methodologies to enhance and extend research and practice. This study was successful in automating a complex five-category manual content analysis of e-cigarette-related content on Twitter using machine learning techniques. The study details machine learning model specifications that provided the best accuracy for data related to e-cigarettes, as well as a replicable methodology to allow extension of these methods to additional topics.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.