• Methods Mol. Biol. · Jan 2018

    Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.

    • Rika Maruyama and Toshifumi Yokota.
    • Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
    • Methods Mol. Biol. 2018 Jan 1; 1828: 79-90.

    AbstractAntisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…