• Med Biol Eng Comput · Dec 2018

    Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.

    • Guanghui Han, Xiabi Liu, Guangyuan Zheng, Murong Wang, and Shan Huang.
    • Beijing Lab of Intelligent Information, School of Computer Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China. hanguanghui@bit.edu.cn.
    • Med Biol Eng Comput. 2018 Dec 1; 56 (12): 2201-2212.

    AbstractGround-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…