• J Cogn Neurosci · Jun 2008

    Combining path analysis with time-resolved functional magnetic resonance imaging: the neurocognitive network underlying mental rotation.

    • Christine Ecker, Michael J Brammer, and Steven C Williams.
    • Brain Image Analysis Unit, Centre for Neuroimaging Sciences, Institute of Psychiatry, London, UK. c.ecker@iop.kcl.ac.uk
    • J Cogn Neurosci. 2008 Jun 1; 20 (6): 1003-20.

    AbstractThere is strong evidence to suggest that the complex cognitive process underlying mental rotation does not have a discrete neural correlate, but is represented as a distributed neural system. Although the neuroanatomical nodes of this so-called rotation network are well established, there is as yet little empirical evidence to indicate how these nodes interact during task performance. Using an optimized, event-related paradigm, this study aimed to test a previously proposed hypothetical neurocognitive network for mental rotation in female subjects with path analysis, and to examine changes in effective connections across different levels of task difficulty. Path analysis was carried out in combination with a time-resolved functional magnetic resonance imaging (fMRI) analysis in order to relate the observed changes on the network level to changes in specific temporal characteristics of the hemodynamic response function on the level of individual neuroanatomical nodes. Overall, it was found that the investigated sequential model did not provide an adequate fit to the data and that a model with parallel information processing was superior to the serial model. This finding challenges traditional cognitive models describing the complex cognitive process underlying mental rotation by a set of sequentially organized, functionally distinct processing stages. It was further demonstrated that the observed in interregional effective connectivity changes with the level of task demand. These changes were directly related to the time course of the experimental paradigm. The results of path analysis in fMRI should therefore only be interpreted in the light of a specific experimental design and should not be considered as general indicators of effective connections.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…