• Rapid Commun. Mass Spectrom. · Jan 2007

    The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air.

    • Brian M Ross and Natasha Vermeulen.
    • Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1. brian.ross@normed.ca
    • Rapid Commun. Mass Spectrom. 2007 Jan 1; 21 (22): 3608-12.

    AbstractThermal desorption (TD) is commonly employed for volatile chemical analysis, it being the method of choice for occupational health and safety monitoring. TD allows for offline capture of volatiles onto a solid sorbent followed by desorption and analysis at a later time. Although TD is routinely used in conjunction with gas chromatography (TD-GC), the assay throughput is low and requires the use of gas standards for quantification. Another technique increasingly employed for volatile chemical analysis, selected ion flow tube mass spectrometry (SIFT-MS), is capable of real-time absolute (i.e. without calibration standards) quantification of volatile chemicals present at single digit parts per billion or higher concentrations. SIFT-MS is, however, normally used for online direct analysis of gas samples rather than offline collection and analysis. The goal of this study was to determine whether a combination of TD and SIFT-MS could be used to quantify volatile compounds, specifically xylene and toluene, more rapidly than TD-GC and without the need for calibration standards. SIFT-MS was able to quantify xylene and toluene levels within 45 s of desorption. Due to the robustness of the SIFT-MS analysis in the presence of water vapour and other major components of air, the purging of tubes usually required to remove these constituents during the TD cycle was not required, therefore reducing the TD cycle time. Comparing the quantity of xylene and toluene applied to the TD tube with the absolute levels quantified by SIFT-MS subsequent to desorption suggested a recovery of over 95% of the applied compound. We conclude that the combination of TD and SIFT-MS allows more rapid and accurate quantification of xylene and toluene (compared with TD-GC) to be achieved without the need for calibration standards, features which may be advantageous in applications requiring rapid analysis and high throughput.Copyright 2007 John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…