• NeuroImage · Sep 2007

    Local linear discriminant analysis (LLDA) for group and region of interest (ROI)-based fMRI analysis.

    • Martin J McKeown, Junning Li, Xuemei Huang, Mechelle M Lewis, Seungshin Rhee, K N Young Truong, and Z Jane Wang.
    • Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, Canada. mmckeown@interchange.ubc.ca
    • Neuroimage. 2007 Sep 1; 37 (3): 855-65.

    AbstractA post-processing method for group discriminant analysis of fMRI is proposed. It assumes that the fMRI data have been pre-processed and analyzed so that each voxel is given a statistic specifying task-related activation(s), and that individually specific regions of interest (ROIs) have been drawn for each subject. The method then utilizes Local Linear Discriminant Analysis (LLDA) to jointly optimize the individually-specific and group linear combinations of ROIs that maximally discriminates between groups (or between tasks, if using the same subjects). LLDA tries to linearly transform each subject's voxel-based activation statistics within ROIs to a common vector space of ROI combinations, enabling the relative similarity of different subjects' activation to be assessed. We applied the method to data recorded from 10 normal subjects during a motor task expected to activate both cortical and subcortical structures. The proposed method detected activation in multiple cortical and subcortical structures that were not present when the data were analyzed by warping the data to a common space. We suggest that the method be applied to group fMRI data when warping to a common space may be ill-advised, such as examining activation in small subcortical structures susceptible to mis-registration, or examining older or neurological patient populations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…