• NeuroImage · Feb 2020

    How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs.

    • René-Maxime Gracien, Michelle Maiworm, Nadine Brüche, Manoj Shrestha, Ulrike Nöth, Elke Hattingen, Marlies Wagner, and Ralf Deichmann.
    • Department of Neurology, Goethe University, Frankfurt/Main, Germany; Brain Imaging Center, Goethe University, Frankfurt/Main, Germany. Electronic address: Rene-Maxime.Gracien@kgu.de.
    • Neuroimage. 2020 Feb 15; 207: 116364.

    BackgroundQuantitative MRI (qMRI) techniques allow assessing cerebral tissue properties. However, previous studies on the accuracy of quantitative T1 and T2 mapping reported a scanner model bias of up to 10% for T1 and up to 23% for T2. Such differences would render multi-centre qMRI studies difficult and raise fundamental questions about the general precision of qMRI. A problem in previous studies was that different methods were used for qMRI parameter mapping or for measuring the transmitted radio frequency field B1 which is critical for qMRI techniques requiring corrections for B1 non-uniformities.AimsThe goal was to assess the intra- and inter-scanner reproducibility of qMRI data at 3 ​T, using two different scanner models from the same vendor with exactly the same multiparametric acquisition protocol.MethodsProton density (PD), T1, T2* and T2 mapping was performed on healthy subjects and on a phantom, performing each measurement twice for each of two scanner models. Although the scanners had different hardware and software versions, identical imaging sequences were used for PD, T1 and T2* mapping, adapting the codes of an existing protocol on the older system line by line to match the software version of the newer scanner. For T2-mapping, the respective manufacturer's sequence was used which depended on the software version. However, system-dependent corrections were carried out in this case. Reproducibility was assessed by average values in regions of interest.ResultsMean scan-rescan variations were not exceeding 2.14%, with average values of 1.23% and 1.56% for the new and old system, respectively. Inter-scanner model deviations were not exceeding 5.21% with average values of about 2.2-3.8% for PD, 2.5-3.0% for T2*, 1.6-3.1% for T1 and 3.3-5.2% for T2.ConclusionsProvided that identical acquisition sequences are used, discrepancies between qMRI data acquired with different scanner models are low. The level of systematic differences reported in this work may help to interpret multi-centre data.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.