• NMR in biomedicine · May 2006

    Review

    Autocalibrated coil sensitivity estimation for parallel imaging.

    • Mark A Griswold, Felix Breuer, Martin Blaimer, Stephan Kannengiesser, Robin M Heidemann, Matthias Mueller, Mathias Nittka, Vladimir Jellus, Berthold Kiefer, and Peter M Jakob.
    • University of Würzburg, Department of Physics, EP5, Am Hubland, 97074 Würzburg, Germany. griswold@uhrad.com
    • NMR Biomed. 2006 May 1; 19 (3): 316-24.

    AbstractParallel imaging has proven to be a robust solution to the problem of acquisition speed in MRI. These methods are based on extracting spatial information from an array of multiple surface coils in order to speed up image acquisition. One of the most essential elements of any parallel imaging method is the information describing the coil sensitivity distribution throughout the sample. This paper covers some of the advanced methods to obtain coil sensitivity-related information, focusing particularly on the class of methods referred to as autocalibrating. These methods all acquire the data for coil sensitivity estimation directly before, during or directly after the reduced data acquisition. After a review of standard methods for coil sensitivity estimation, some of the basic and advanced autocalibrating methods are reviewed, and some example applications shown.Copyright (c) 2006 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…