• Am. J. Physiol. · Aug 1984

    Analysis of microvascular water and solute exchanges in the renal medulla.

    • T L Pallone, T I Morgenthaler, and W M Deen.
    • Am. J. Physiol. 1984 Aug 1; 247 (2 Pt 2): F303-15.

    AbstractA theoretical model has been developed to simulate solute and water transport in the medullary microcirculation of the normal hydropenic rat. The model is formulated in terms of a countercurrent vascular unit consisting of one descending (DVR) and several ascending vasa recta (AVR) extending from the corticomedullary junction to the tip of the papilla. Steady-state mass balances relate gradients in NaCl, urea, and plasma protein concentrations and variations in the flow rates of plasma and red blood cells to permeability properties of the vasa recta and erythrocytes. In contrast to previous models, transmural volume fluxes are assumed to be present in both DVR and AVR. Available micropuncture measurements suggesting net volume removal from DVR within the inner medulla are found to be consistent with NaCl reflection coefficients in DVR between 0.10 and 0.80. The hydraulic permeability in the DVR is estimated to be greater than 0.18 X 10(-6) cm X s-1 X mmHg-1. Based on currently available data, reliable bounds cannot yet be placed on the hydraulic permeability of the AVR. The vascular unit is predicted to accomplish substantial net removal of NaCl and water from the inner medullary interstitium but relatively little removal of urea. Red cells leaving the inner medulla in the AVR are found to be slightly dehydrated. It is calculated that at a given blood flow rate, the lower the initial medullary hematocrit, the more effective the vascular unit is at removing water. Several unresolved issues are discussed, including the role of the capillary plexus that joins DVR with AVR. To the extent that the volume uptake observed in the exposed papilla in structures beyond the DVR occurs in the capillary plexus and not in the AVR, estimated values of AVR hydraulic permeability are reduced, as is predicted overall volume uptake by the vascular unit in the inner medulla.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…