-
Int. J. Radiat. Oncol. Biol. Phys. · Oct 2005
Dose-volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement.
- Eduard Schreibmann and Lei Xing.
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847.
- Int. J. Radiat. Oncol. Biol. Phys. 2005 Oct 1; 63 (2): 584-93.
PurposeBeam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement.Methods And MaterialsThe general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the two types of IMRT plans were compared quantitatively.ResultsAn effective angular ranking model with consideration of volumetric effect has been developed. It is shown that the previously reported dose-based angular ranking represents a special case of the general formalism proposed here. Application of the technique to a abdominal and a head-and-neck IMRT case indicated that the proposed technique is capable of producing clinically sensible angular ranking. In both cases, we found that the IMRT plans obtained under the guidance of EUD-based angular ranking were improved in comparison with that obtained using the conventional uniformly spaced beams.ConclusionsThe EUD-based function is a general approach for angular ranking and allows us to identify the potentially good and bad angles for clinically complicated cases. The ranking can be used either as a guidance to facilitate the manual beam placement or as prior information to speed up the computer search for the optimal beam configuration. Thus the proposed technique should have positive clinical impact in facilitating the IMRT planning process.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.