• NeuroImage · Apr 2008

    An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain.

    • Tong Zhu, Xiaoxu Liu, Patrick R Connelly, and Jianhui Zhong.
    • Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642-8648, USA.
    • Neuroimage. 2008 Apr 15; 40 (3): 1144-56.

    AbstractEvaluation of measurement uncertainties (or errors) in diffusion tensor-derived parameters is essential to quantify the sensitivity and specificity of these quantities as potential surrogate biomarkers for pathophysiological processes with diffusion tensor imaging (DTI). Computational methods such as the Monte Carlo simulation have provided insights into characterization of the measurement uncertainty in DTI. However, due to the complexity of real brain data as well as different sources of variations during the image acquisition, a robust estimator for DTI measurement uncertainty in human brain is required. Recent studies have shown that wild bootstrap, a novel nonparametric statistical method, can potentially provide effective estimations of DTI measurement uncertainties in human brain DTI data. In this study, we further optimized the DTI application of the wild bootstrap method for typical clinical applications. We evaluated the validity of wild bootstrap utilizing numerical simulations with different combinations of DTI protocol parameters and wild bootstrap experimental designs, and quantitatively compared estimates of uncertainties from wild bootstrapping with those from Monte Carlo simulations. Our results demonstrate that a wild bootstrap implementation using at least 1000 wild bootstrap iterations with a type II or type III heteroskedasticity consistent covariance matrix estimator provides robust evaluations of most DTI protocols.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.