• NeuroImage · Feb 2012

    An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis.

    • Paul Schmidt, Christian Gaser, Milan Arsic, Dorothea Buck, Annette Förschler, Achim Berthele, Muna Hoshi, Rüdiger Ilg, Volker J Schmid, Claus Zimmer, Bernhard Hemmer, and Mark Mühlau.
    • Department of Neurology, Technische Universität München, Munich, Germany.
    • Neuroimage. 2012 Feb 15; 59 (4): 3774-83.

    AbstractIn Multiple Sclerosis (MS), detection of T2-hyperintense white matter (WM) lesions on magnetic resonance imaging (MRI) has become a crucial criterion for diagnosis and predicting prognosis in early disease. Automated lesion detection is not only desirable with regard to time and cost effectiveness but also constitutes a prerequisite to minimize user bias. Here, we developed and evaluated an algorithm for automated lesion detection requiring a three-dimensional (3D) gradient echo (GRE) T1-weighted and a FLAIR image at 3 Tesla (T). Our tool determines the three tissue classes of gray matter (GM) and WM as well as cerebrospinal fluid (CSF) from the T1-weighted image, and, then, the FLAIR intensity distribution of each tissue class in order to detect outliers, which are interpreted as lesion beliefs. Next, a conservative lesion belief is expanded toward a liberal lesion belief. To this end, neighboring voxels are analyzed and assigned to lesions under certain conditions. This is done iteratively until no further voxels are assigned to lesions. Herein, the likelihood of belonging to WM or GM is weighed against the likelihood of belonging to lesions. We evaluated our algorithm in 53 MS patients with different lesion volumes, in 10 patients with posterior fossa lesions, and 18 control subjects that were all scanned at the same 3T scanner (Achieva, Philips, Netherlands). We found good agreement with lesions determined by manual tracing (R2 values of over 0.93 independent of FLAIR slice thickness up to 6mm). These results require validation with data from other protocols based on a conventional FLAIR sequence and a 3D GRE T1-weighted sequence. Yet, we believe that our tool allows fast and reliable segmentation of FLAIR-hyperintense lesions, which might simplify the quantification of lesions in basic research and even clinical trials.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.