• Brain research bulletin · Oct 2017

    Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown.

    • Lin Su, Ruichen Shu, Chengcheng Song, Yonghao Yu, Guolin Wang, Yazhuo Li, and Changxiao Liu.
    • Department of Anesthesiology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Research Institute of Anesthesiology, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, 308 Anshanxi Road, Nankai District, Tianjin 300193, PR China. Electronic address: sulin_sl@126.com.
    • Brain Res. Bull. 2017 Oct 1; 135: 8-24.

    BackgroundCold hyperalgesia is an intractable sensory abnormality commonly seen in peripheral neuropathies. Although glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) is required for the formation of pathological cold pain has been revealed, potential transduction mechanism is poorly elucidated. We have previously demonstrated the contribution of enhanced activity of transient receptor potential melastatin 8 (TRPM8) to cold hyperalgesia in neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve. Recently, the enhancement of TRPM8 activity is attributed to the increased TRPM8 plasma membrane trafficking. In addition, TRPM8 can be sensitized by the activation of GFRα3, leading to increased cold responses in vivo. The aim of this study was to investigate whether GFRα3 could influence cold hyperalgesia of CCI rats via modulating TRPM8 expression and plasma membrane trafficking in dorsal root ganglion (DRG).MethodsMechanical allodynia, cold and heat hyperalgesia were measured on 1day before CCI and the 1st, 4th, 7th, 10th and 14th day after CCI. TRPM8 total expression and membrane trafficking as well as GFRα3 expression in DRG were detected by immunofluorescence and western blot. Furthermore, GFRα3 small interfering RNA (siRNA) was intrathecally administrated to reduce GFRα3 expression in DRG, and the effects of GFRα3 knockdown on CCI-induced behavioral sensitization as well as TRPM8 total expression and membrane trafficking in both mRNA and protein levels were investigated, and the change in coexpression of TRPM8 with GFRα3 was also evaluated. Then, the effect of GFRα3 activation with artemin on pain behavior of CCI rats pretreated with the selective TRPM8 antagonist RQ-00203078 was observed.ResultsHere we found that TRPM8 total expression and plasma membrane trafficking as well as GFRα3 expression in DRG were initially increased on the 4th day after CCI, and maintained at the peak level from the 10th to the 14th day, which entirely conformed with the induction and maintenance of behavioral-reflex facilitation following CCI. The coexpression of TRPM8 with GFRα3, which was mainly located in peptidergic C-fibers DRG neurons, was also increased after CCI. Downregulation of GFRα3 protein in DRG attenuated CCI-induced cold hyperalgesia without affecting mechanical allodynia and heat hyperalgesia, and reduced the upregulations of TRPM8 total expression and plasma membrane trafficking as well as coexpression of TRPM8 with GFRα3 induced by CCI. Additionally, the inhibition of TRPM8 abolished the influence of GFRα3 activation on cold hyperalgesia after CCI.ConclusionOur results demonstrate that GFRα3 knockdown specially inhibits cold hyperalgesia following CCI via decreasing the expression level and plasma membrane trafficking of TRPM8 in DRG. GFRα3 and its downstream mediator, TRPM8, represent a new analgesia axis which can be further exploited in sensitized cold reflex under the condition of chronic pain.Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.