• J Magn Reson Imaging · Jul 2016

    Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping.

    • Manju Liu, Saifeng Liu, Kiarash Ghassaban, Weili Zheng, Dane Dicicco, Yanwei Miao, Charbel Habib, Tarek Jazmati, and E Mark Haacke.
    • Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, USA.
    • J Magn Reson Imaging. 2016 Jul 1; 44 (1): 59-71.

    PurposeTo investigate the correlation of non-heme iron content in deep gray matter nuclei as a function of age using quantitative susceptibility mapping (QSM) from both whole-structural and regional perspectives.Materials And MethodsWe studied a group of 174 normal subjects ranging from 20 to 69 years old and measured the magnetic susceptibility of seven subcortical gray matter nuclei. SWI (susceptibility-weighted imaging) phase images were used to generate the susceptibility maps, which were acquired on a 1.5T scanner. The 3D whole-structural measurements were used to determine age-related thresholds, which were applied to calculate the local iron deposition (RII: portion of the structure that contains iron concentration larger than the structure threshold). Age-susceptibility correlation was reported for each measured structure for both the whole-region and two-region (low iron and high iron content regions) analysis.ResultsFor the local high iron content region, a strong age-susceptibility correlation was found in the caudate nucleus (CN,R = 0.9), putamen (PUT,R = 0.9), red nucleus (RN,R = 0.8), globus pallidus (GP,R = 0.7), substantia nigra (SN,R = 0.5), and pulvinar thalamus (PT,R = 0.5); for the global iron content, a strong age-susceptibility correlation was found in CN(R = 0.6), PUT(R = 0.7), and RN(R = 0.6). Overall, for each structure analyzed in this study, regional analysis showed higher correlation coefficient and higher slope comparing to the whole-region analysis. Further, we found the quantitative conversion factor between magnetic susceptibility and iron concentration to be 1.03 ± 0.03 ppb per μg iron/g wet tissue.ConclusionWe conclude that the age-susceptibility correlation can serve as a quantitative magnetic susceptibility baseline as a function of age for monitoring abnormal global and regional iron deposition. A regional analysis has shown a tighter age related behavior, providing a reliable and sensitive reference for what can be considered normal iron content for studies of neurodegenerative diseases. J. Magn. Reson. Imaging 2016;44:59-71.© 2015 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.